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Single crystals of the title compound, Al2P6O18, were obtained

by solid-state reaction. The monoclinic structure is isotypic

with its CrIII, GaIII and RuIII analogues and is built up of six-

membered phosphate ring anions, P6O18
6�, isolated from each

other and further linked by isolated AlO6 octahedra by

sharing corners. Each AlO6 octahedron is linked to four

P6O18
6� rings. More accurately, two rings are linked through

bidentate diphosphate groups attached in the cis-positions to

the AlO6 octahedron. The other two rings are linked to the

two remaining corners, also in cis-positions of the AlO6

octahedron.

Related literature

The title compound was first synthesized by Kanene et al.

(1985) and its unit cell determined from Weissenberg photo-

graphs. Isotypic compounds have been reported: Ga2P6O18

(Chudinova et al., 1987); Cr2P6O18 (Bagieu-Beucher & Guitel,

1977) and Ru2P6O18 (Fukuoka et al., 1995). For a review of the

crystal chemistry of cyclohexaphosphates, see: Durif (1995,

2005). For applications of aluminium phosphate, see: Vippola

et al. (2000). For the structures of other cyclohexaphosphates

with the P6O18
6� anion, see: Averbuch-Pouchot & Durif

(1991a,b,c).

Experimental

Crystal data

Al2P6O18

Mr = 527.79
Monoclinic, P21=c
a = 6.0931 (2) Å
b = 15.0676 (4) Å
c = 8.2016 (3) Å
� = 105.166 (1)�

V = 726.75 (4) Å3

Z = 2
Mo K� radiation
� = 0.96 mm�1

T = 296 K
0.16 � 0.07 � 0.06 mm

Data collection

Bruker APEXII CCD
diffractometer

Absorption correction: multi-scan
(SADABS; Bruker, 2008)
Tmin = 0.860, Tmax = 0.945

6548 measured reflections
1674 independent reflections
1398 reflections with I > 2�(I)
Rint = 0.035

Refinement

R[F 2 > 2�(F 2)] = 0.032
wR(F 2) = 0.130
S = 1.16
1674 reflections

118 parameters
��max = 0.56 e Å�3

��min = �0.71 e Å�3

Table 1
Selected geometric parameters (Å, �).

P1—O3 1.471 (2)
P1—O5 1.478 (2)
P1—O7 1.587 (2)
P1—O9 1.594 (3)
P2—O4 1.482 (2)
P2—O6 1.487 (2)
P2—O7i 1.579 (2)
P2—O8 1.593 (2)
P3—O1 1.476 (2)

P3—O2 1.479 (3)
P3—O9ii 1.594 (2)
P3—O8iii 1.597 (2)
Al—O3 1.852 (2)
Al—O2iv 1.873 (3)
Al—O1 1.877 (3)
Al—O4 1.887 (3)
Al—O5v 1.889 (3)
Al—O6iii 1.904 (2)

P2v—O7—P1 139.91 (16)
P2—O8—P3iii 130.56 (16)

P1—O9—P3vi 129.42 (16)

Symmetry codes: (i) x;�yþ 1
2; zþ 1

2; (ii) x� 1;�yþ 1
2; z� 1

2; (iii) �xþ 1;�y;�z; (iv)
x þ 1; y; z; (v) x;�yþ 1

2; z� 1
2; (vi) xþ 1;�yþ 1

2; z þ 1
2.

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT

(Bruker, 2008); data reduction: SAINT; program(s) used to solve

structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine

structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CaRine

(Boudias & Monceau, 1998) and ORTEP-3 (Farrugia, 1997); software

used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the
IUCr electronic archives (Reference: WM2303).
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Comment

Although the Al2P6018 cyclohexaphosphate is known since twenty five years (Kanene et al., 1985), its crystal structure has

never been refined from single crystal X-ray diffraction data. This paper deals with this purpose.

The crystal structure of Al2P6018 is isotypic with Cr2P6O18 (Bagieu-Beucher & Guitel, 1977), Ga2P6O18 (Chudinova

et al., 1987) and Ru2P6O18 (Fukuoka et al., 1995). It is built up of six-membered phosphate ring anions (P6O18)6- isolated

from each others and further linked by AlO6 octahedra by sharing corners. These centrosymmetric ring anions (P6O18)6- are

located around inversion centers at 0 0 1/2 and 0 1/2 0 (Fig. 1a). Their mean planes are parallel to either (121) or (121 ) planes
(Fig. 1 b). Each AlO6 octahedron is linked to four P6O18 rings. More accurately, two rings are linked through bidentate

diphosphate groups attached in cis-positions to the AlO6 octahedron. The two other rings are linked to the two remaining

corners of the AlO6 octahedron (Fig. 2). Each (P6O18)6- ring anion is connected to eight AlO6 octahedra by corner-sharing.

Four diphosphate groups of the ring anion including P(3)O4 and either P(1)O4 or P(2)O4 tetrahedra are bidentate whereas

the P(1)O4—P(2)O4 couple does not bind in a bidentate fashion. This may be correlated with the value of the P(1)—O—P(2)

angle (139.91 (16)°) which is greater than P(2)—O—P(3) (130.56 (16)°) and P(1)—O—P(3) (129.42 (16) °) ones and also
to the P(1)—P(2) distance (2.9741 (12) Å) slightly greater than P(2)—P(3) = 2.8970 (11) Å and P(1)—P(3) = 2.8826 (12)
Å ones.

A survey of the internal symmetry of the (P6O18)6- ring anions shows that most of them are centrosymmetric with

P—P—P angles spreading from 87.8° to 142.8° (Averbuch-Pouchot & Durif, 1991a), i.e. with large deviations from the

ideal value of 120°. When the (P6O18)6- ring anion has internal 1 symmetry, it is built up of three independent P atoms and

hence there are three characteristic αi = P—P—P angles in the ring (α1 = P1—P2—P3, α2 = P2—P3—P1, α3 = P3—P1—P2).

When taking the δ = Σi|120-αi| parameter as a rough measure of the ring distorsion, Al2P6O18 exhibits the third lowest δ =

15.28° value after its homologous congeners Ru2P6O18 (δ = 13.78°) and Cr2P6O18 (δ = 14.39°). It should be noted that the

characteristic P—P—P angles for both isotypic Ga2P6O18 and Fe2P6O18 structures have not been reported. The highest δ

values calculated from data for other cyclohexaphosphates reported up to date are related to Cu2(NH4)2P6O18
.8H2O (δ =

65.98°) (Averbuch-Pouchot & Durif, 1991b) and Ag4Li2P6O18.2H2O (δ = 67.29°) (Averbuch-Pouchot & Durif, 1991c).

For applications of aluminium phosphate, see: Vippola et al. (2000). For general reviews on the crystal chemistry of
cyclohexaphosphates, see: Durif (1995) and Durif (2005).

Experimental

Single crystals of the title compound have been obtained by reacting Al2O3 with (NH4)H2PO4 in an alumina boat. A mixture

of these reagents in the molar ratio 1:6 was used for the synthesis. The mixture was first heated at 473 K for 24 h. Afterwards

http://dx.doi.org/10.1107/S1600536810005374
http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Oudahmane,%20A.
http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Mbarek,%20A.
http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=El-Ghozzi,%20M.
http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Avignant,%20D.
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the temperature was successively raised to 573 K for 12 h, then to 673 K for 12 additional hours and finally to 923 K.
After a heating period of 48 h at this temperature, the sample was cooled to room temperature by switching the furnace off.
Translucent rhombs of Al2P6O18 were extracted from the batch.

Refinement

The highest residual peak in the final difference Fourier map was located 0.47 Å from atom O7 and the deepest hole was
located 1.12 Å from atom P3.

Figures

Fig. 1. (a) ORTEP-3 view of the centrosymmetric (P6O18)6- ring anion. Displacement ellips-
oids are drawn at the 50% probability level. Symmetry codes: (iii) 2 - x, 1/2 + y, 1/2 - z; (iv)
1 - x, 1 - y, -z; (v) 2 - x, 1 - y, 1 - z; (vi) x, 1 + y, z; (vii) 1 + x, 1 + y, 1 + z; (viii) x, 3/2 - y,
1/2 + z. (b) Partial projection along [101] showing the orientation of the mean planes of the
(P6O18)6- ring anions.

Fig. 2. Partial projection showing the connection between the (P6O18)6- ring anion and the
AlO6 octahedra.

Aluminium hexacyclophosphate

Crystal data

Al2P6O18 F(000) = 520

Mr = 527.79 Dx = 2.412 Mg m−3

Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2041 reflections
a = 6.0931 (2) Å θ = 3.5–27.5°
b = 15.0676 (4) Å µ = 0.96 mm−1

c = 8.2016 (3) Å T = 296 K
β = 105.166 (1)° Rhombic, colourless

V = 726.75 (4) Å3 0.16 × 0.07 × 0.06 mm
Z = 2

Data collection

Bruker APEXII CCD
diffractometer 1674 independent reflections

Radiation source: fine-focus sealed tube 1398 reflections with I > 2σ(I)
graphite Rint = 0.035

Detector resolution: 8.3333 pixels mm-1 θmax = 27.5°, θmin = 2.7°

φ and ω scans h = −7→7
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Absorption correction: multi-scan
(SADABS; Bruker, 2008) k = −11→19

Tmin = 0.860, Tmax = 0.945 l = −10→10
6548 measured reflections

Refinement

Refinement on F2 0 restraints

Least-squares matrix: full Primary atom site location: structure-invariant direct
methods

R[F2 > 2σ(F2)] = 0.032 Secondary atom site location: difference Fourier map

wR(F2) = 0.130
w = 1/[σ2(Fo

2) + (0.0787P)2 + 0.2264P]
where P = (Fo

2 + 2Fc
2)/3

S = 1.16 (Δ/σ)max < 0.001

1674 reflections Δρmax = 0.56 e Å−3

118 parameters Δρmin = −0.71 e Å−3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The
cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds
in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used
for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, convention-

al R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-

factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

P1 0.70149 (15) 0.33738 (5) 0.01706 (11) 0.0049 (2)
P2 0.64525 (14) 0.04431 (5) 0.21869 (11) 0.0050 (2)
P3 0.08497 (14) 0.11301 (5) −0.20937 (11) 0.0054 (2)
Al 0.61549 (17) 0.13831 (6) −0.12313 (13) 0.0046 (3)
O1 0.3051 (4) 0.15855 (15) −0.1454 (3) 0.0082 (5)
O2 −0.0766 (4) 0.11484 (16) −0.1026 (3) 0.0090 (5)
O3 0.6755 (4) 0.25850 (15) −0.0920 (3) 0.0078 (5)
O4 0.6653 (4) 0.12162 (15) 0.1117 (3) 0.0076 (5)
O5 0.5656 (4) 0.34555 (16) 0.1415 (3) 0.0084 (5)
O6 0.4448 (4) −0.01495 (15) 0.1608 (3) 0.0073 (5)
O7 0.6509 (5) 0.42395 (15) −0.0967 (3) 0.0109 (5)
O8 0.8737 (4) −0.01227 (15) 0.2539 (3) 0.0110 (5)
O9 0.9653 (4) 0.34779 (16) 0.1085 (3) 0.0107 (5)
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Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

P1 0.0052 (5) 0.0050 (4) 0.0042 (5) −0.0007 (3) 0.0008 (3) 0.0001 (3)
P2 0.0060 (5) 0.0041 (4) 0.0050 (5) −0.0003 (3) 0.0014 (3) −0.0009 (3)
P3 0.0036 (5) 0.0058 (4) 0.0069 (5) 0.0007 (3) 0.0015 (3) 0.0002 (3)
Al 0.0034 (5) 0.0055 (5) 0.0052 (5) −0.0006 (4) 0.0015 (4) −0.0003 (3)
O1 0.0045 (12) 0.0065 (12) 0.0136 (13) −0.0012 (9) 0.0025 (10) −0.0021 (9)
O2 0.0050 (12) 0.0127 (12) 0.0094 (13) −0.0002 (9) 0.0024 (10) 0.0014 (10)
O3 0.0110 (13) 0.0045 (11) 0.0077 (12) −0.0028 (9) 0.0020 (10) −0.0015 (9)
O4 0.0119 (13) 0.0059 (11) 0.0053 (12) −0.0022 (9) 0.0025 (10) −0.0007 (9)
O5 0.0066 (13) 0.0132 (12) 0.0057 (12) 0.0000 (9) 0.0020 (10) 0.0003 (9)
O6 0.0060 (12) 0.0063 (12) 0.0098 (12) 0.0002 (9) 0.0025 (10) −0.0012 (9)
O7 0.0221 (15) 0.0059 (12) 0.0053 (12) 0.0033 (9) 0.0045 (11) 0.0022 (9)
O8 0.0061 (12) 0.0073 (12) 0.0175 (14) −0.0004 (9) −0.0007 (10) −0.0038 (9)
O9 0.0052 (13) 0.0186 (13) 0.0084 (13) −0.0021 (10) 0.0019 (10) −0.0062 (10)

Geometric parameters (Å, °)

P1—O3 1.471 (2) Al—O3 1.852 (2)
P1—O5 1.478 (2) Al—O2iv 1.873 (3)
P1—O7 1.587 (2) Al—O1 1.877 (3)
P1—O9 1.594 (3) Al—O4 1.887 (3)
P2—O4 1.482 (2) Al—O5v 1.889 (3)

P2—O6 1.487 (2) Al—O6iii 1.904 (2)

P2—O7i 1.579 (2) O2—Alvi 1.873 (3)

P2—O8 1.593 (2) O5—Ali 1.889 (3)

P3—O1 1.476 (2) O6—Aliii 1.904 (2)

P3—O2 1.479 (3) O7—P2v 1.579 (2)

P3—O9ii 1.594 (2) O8—P3iii 1.597 (2)

P3—O8iii 1.597 (2) O9—P3vii 1.594 (3)

O3—P1—O5 119.77 (14) O3—Al—O4 90.93 (11)
O3—P1—O7 109.47 (14) O2iv—Al—O4 89.61 (11)
O5—P1—O7 106.27 (14) O1—Al—O4 90.56 (12)
O3—P1—O9 107.50 (14) O3—Al—O5v 89.33 (11)

O5—P1—O9 110.17 (14) O2iv—Al—O5v 90.32 (11)

O7—P1—O9 102.27 (14) O1—Al—O5v 89.50 (11)

O4—P2—O6 118.09 (14) O4—Al—O5v 179.74 (12)

O4—P2—O7i 110.17 (13) O3—Al—O6iii 178.54 (12)

O6—P2—O7i 107.36 (14) O2iv—Al—O6iii 88.66 (11)

O4—P2—O8 108.93 (14) O1—Al—O6iii 89.77 (11)

O6—P2—O8 110.01 (13) O4—Al—O6iii 90.46 (11)

O7i—P2—O8 100.91 (14) O5v—Al—O6iii 89.29 (11)
O1—P3—O2 117.68 (15) P3—O1—Al 139.30 (16)
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O1—P3—O9ii 108.14 (14) P3—O2—Alvi 139.15 (17)

O2—P3—O9ii 109.62 (14) P1—O3—Al 149.33 (16)

O1—P3—O8iii 109.89 (14) P2—O4—Al 133.84 (15)

O2—P3—O8iii 108.82 (14) P1—O5—Ali 138.32 (16)

O9ii—P3—O8iii 101.47 (14) P2—O6—Aliii 138.20 (15)

O3—Al—O2iv 90.88 (11) P2v—O7—P1 139.91 (16)

O3—Al—O1 90.69 (11) P2—O8—P3iii 130.56 (16)

O2iv—Al—O1 178.43 (11) P1—O9—P3vii 129.42 (16)
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x−1, −y+1/2, z−1/2; (iii) −x+1, −y, −z; (iv) x+1, y, z; (v) x, −y+1/2, z−1/2; (vi) x−1, y, z; (vii)
x+1, −y+1/2, z+1/2.
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Fig. 1
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Fig. 2


